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Abstract

Storage-based intrusion detection systems (IDSes) can be valuable tools in monitoring for and noti-
fying administrators of malicious software executing on a host computer, including many common
intrusion toolkits. This paper makes a case for implementing IDS functionality in the firmware of
workstations’ locally attached disks, on which the bulk of important system files typically reside.
To evaluate the feasibility of this approach, we built a prototype disk-based IDS into a SCSI disk
emulator. Experimental results from this prototype indicate that it would indeed be feasible, in
terms of CPU and memory costs, to include IDS functionality in low-cost desktop disk drives.
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1 Introduction

Intrusion detection systems (IDSes) are important tools for identifying suspicious and malicious

activity in computer systems. Such IDSes are commonly deployed both on end-user computers

(hosts) and at points in the network leading to hosts. As with most things, however, there are no

perfect intrusion detection systems. All are susceptible to false positives and undetected intrusions.

Most also are much better at detecting probes and attempts to intrude than they are at detecting

misbehavior after an intrusion. For example, host-based IDSes are vulnerable to being turned off

when the host is compromised, and many fewer signs are visible to network-based IDSes once the

intruder is “in.”

A storage-based IDS runs inside of a storage device, watching the sequence of requests for signs

of intrusions [Pennington03]. Storage-based IDSes are a new vantage point for intrusion detection,

offering complementary views into system activity, particularly after a successful intrusion has

begun. Many rootkits and intruders manipulate files that can be observed by the disk that stores

them. For example, an intruder may overwrite system binaries or alter logfiles in an attempt to hide

evidence of the intrusion. Other examples include adding backdoors, Trojan horses, or discreet

repositories of intruder content (such as pirated content). A storage-based IDS can detect such

actions. Further, because a storage-based IDS is not controlled by the host operating system (or by

the host’s IDS), it will continue to operate even when the network-based IDS is circumvented and

the host-based IDS is turned off.

Our previous work developed and experimented with a storage-based IDS in the context of

a NFS server [Pennington03], illustrating that it involves minimal overhead and can detect many

intrusions in diskless hosts (i.e., hosts with all system files on the NFS server). However, most

environments don’t work that way. The vast majority of systems—and those that are most vul-

nerable to attack—are single-user systems with local disks. To be effective in practice, it must be
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Figure 1: The role of a disk-based intrusion detection system (IDS). A disk-based IDS watches
over all data and executable files that are persistently written to local storage, monitoring for
suspicious activity that might indicate an intrusion on the host computer.

possible to run the storage-based IDS on the local disk of each workstation. Figure 1 shows an

example of such a disk-based IDS deployment. The host computer is a standard user desktop and

is therefore vulnerable to user errors and software holes. The storage-based IDS in the disk backs

up the host and network IDSes and runs on a SCSI or IDE/ATA disk with expanded processing

capabilities. All three IDSes are administered by an external administrative machine, perhaps as

part of a larger-scale managed computing environment.
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A workstation disk is a challenging environment for intrusion detection. To function, a disk-

based IDS must have semantic knowledge about the file systems contained on the disk, so it can

analyze low-level “read block” and “write block” requests for actions indicating suspicious ac-

cesses or modifications to the file system. At the same time, disks are embedded devices with

cost-constrained processing and memory resources and little tolerance for performance degrada-

tion. Additionally, effective operation will require a secure channel for communication between

the administrator and the disk-based IDS; for practical purposes, this channel should seamlessly

integrate with the disk’s existing block interface.

This paper makes a case for the feasibility of performing intrusion detection inside workstation

disks. It describes a prototype disk-based IDS built on top of a storage device emulator. It connects

to the SCSI bus in a real computer system, looking and “feeling” just like a disk, and monitors real

storage requests for behavior that matches the behavior of real-world intrusion tools. Experiments

with this prototype demonstrate that the CPU and memory costs will be well within tolerable

bounds for modern desktop disks for reasonable rulesets and workloads. For example, only a few

thousand CPU cycles are needed for over 99% of disk I/Os, and less than a megabyte is needed even

for aggressive rulesets. Moreover, any disk in which the IDS is not enabled would incur no CPU or

memory cost, making it feasible to include the support in all devices and enable only for those that

pay for licenses; this model has worked well for 3com’s NIC-based firewall product [3Com01a].

The remainder of this paper is organized as follows. Section 2 motivates workstation disks as

an untapped location for real-time intrusion detection. Section 3 discusses IDS design challenges

relating to the workstation disk environment. Section 4 describes the prototype disk-based IDS

system. Section 5 evaluates the prototype performance. Section 6 discusses the feasibility of real-

world IDS integration. Section 7 summarizes the contributions of this work.
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2 Background and motivation

This section motivates the use of workstation disks as a target environment for intrusion detection,

discusses previous work that demonstrates the effectiveness of a storage-based IDS in identifying

real-world intruder behavior, and reviews work related to storage-based IDSes.

2.1 Intrusion detection in storage

Storage-based intrusion detection enables storage devices such as workstation disks to watch stor-

age traffic for suspicious behavior. Because storage-based IDSes run on separate hardware with a

limited external interface, they enjoy a natural compromise independence from the hosts to which

they are attached: An attacker who breaches the security of the host must then breach a separate

perimeter to disable a security system on a storage device. Also, because storage devices see all per-

sistent activity on a computer, several common intruder actions [Denning99, p. 218][Scambray01,

pp. 363–365] are quite visible inside the storage device.

A storage IDS shines when other IDSes have been bypassed or disabled but neither the storage

device nor the administrator’s computer have been compromised. The threat model we address is

when an attacker has full software control but not full hardware control over the host system. This

could come in the form of an intruder breaking into a host over the network, or from a user with

administrative privileges mistakenly executing malicious software. We do not explicitly protect

against an aggressive insider with physical access to the disk, although Section 3.2 discusses a

possible solution to this problem.

Administrators can watch for a variety of possible intruder actions inside a storage-based

IDS [Pennington03]. First, the IDS could watch for unexpected modifications to file data or meta-

data; this is similar to the functionality of Tripwire [Kim94a], except that a storage-based IDS
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monitors in real time. The IDS could also watch for suspicious access patterns, such as a non-

append write to a system logfile. It could watch for loss of file integrity for well-structured files

such as /etc/passwd or database files. And it could watch for suspicious content, such as mal-

formed file names or known virus signatures.

Storage-based intrusion detection is not a panacea. While false positives should be infrequent,

legitimate actions that modify a watched file will create an alert to the administrator. The broader

the scope of watched actions, the higher the frequency of false positives will be. On the other

hand, a storage IDS could miss an intrusion entirely if it is configured to watch too limited a set

of files. Additionally, a storage-based IDS will likely have some performance impact on the host

computer’s workload.

2.2 Real-world efficacy of a storage IDS

In previous work, Pennington et al. [Pennington03] built and analyzed a storage-based IDS inside

an NFS server. Their work demonstrates that storage-based intrusion detection is indeed an effec-

tive tool for detecting the effects of real-world attacks, and that their implementation is efficient in

its processing and memory requirements.

To evaluate the real-world efficacy of their server-based IDS, the authors analyzed the behavior

of eighteen publicly-available intrusion tools. They found that 83% of the intrusion tools modified

one or more system files, and that these modifications would be noticed by their storage-based IDS

when it monitored a simple, default ruleset. Also, 39% of the tools altered a system log file, an

action which also would be detected by the storage-based IDS under the default ruleset. When the

authors analyzed a real host computer that had been unexpectedly compromised, they discovered

that a storage-based IDS would have immediately noticed the intrusion because of the system

binaries that were modified during the attack.
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The authors also analyzed some brief traces of a desktop workstation’s disk and reported pre-

liminary results indicating that false positives would very rarely be reported by a storage-based

IDS, with the exception of (planned) nightly rewrites of the password file. Section 5.4 presents

results from a more extensive collection of traces, confirming and underscoring this result.

2.3 Related work

Intrusion detection is a well-studied field. One of the earliest formalizations of intrusion detection

is presented by Denning et al. [Denning87a]. Tripwire is one of the more well-known intrusion

detection systems [Kim94a, Kim94b]; we use the suggested Tripwire configuration as part of the

basis for the ruleset in the experiments in this paper. Investigations have been made into intrusion

detection systems founded on machine learning [Forrest96] as well as static rules to watch system

calls on a machine [Ko97a]. In 1998, Axelsson surveyed the state-of-the-art for intrusion detection

systems [Axelsson98].

Recent research has explored other ways of creating similar protection boundaries to ours.

Chen and Noble [Chen01a] and Garfinkel and Rosenblum [Garfinkel03] propose using a virtual

machine monitor (VMM) that can inspect and observe machine state while remaining compromise

independent of most host software. This could be expanded by adding a storage-based IDS into the

virtual machine’s storage module. Additionally, recent work explores the idea of hardware support

for doing intrusion detection inside systems [Ganger01, Zhang02a].

Adding IDS functionality to storage devices can be viewed as part of a recurring theme of

migration of processing capability to peripheral devices. For example, several research groups

have explored the performance benefits of offloading scan and other database-like primitives to

storage devices [Acharya98, Keeton98, Riedel98]. Other research has explored the use of device

intelligence for eager writing [Chao92, Wang99]. Recently, Sivathanu et al. proposed the general

6



notion of having storage devices understand host-level data semantics and use that knowledge to

build a variety of performance, availability, and security features [Sivathanu03]. A disk-based IDS

is a specific instance of such “semantically-smart disk systems.”

3 Design issues for disk-based intrusion detection systems

There are four main design issues for a storage-based intrusion detection system [Pennington03].

These include specifying access policies, securely administering the IDS, monitoring storage ac-

tivity for policy violations, and responding to policy violations. This section discusses the aspects

of these that specifically relate to the challenging environment of workstation disks.

3.1 Specifying access policies

For the sake of of usability and correctness, there must be a simple and straightforward syntax

for human administrators to state access policies to a disk-based IDS. Although a workstation

disk operates using a block-based interface, it is imperative that the administrator be able to refer

to higher-level file system objects contained on the disk when stating policies. As an example,

an appropriate statement might be: Warn me if anything changes in the directory /sbin. In our

experience, the Tripwire-like rules used by Pennington et al. to specify access policies for their

server-based IDS [Pennington03] work well for specifying policies to a disk-based IDS.

A disk-based IDS must be capable of mapping such high-level statements into a set of vio-

lating interface actions. This set of violating actions may include writes, reads (e.g., of honeyto-

kens [Card] such as creditcards.txt), and interface-specific commands (such as the FORMAT

UNIT command for SCSI). One such mapping for the above “no-change” rule for /sbin could

be: Generate the alert “the file /sbin/fsck was modified” when a write to block #280 causes the

7



contents of block #280 to change. To accomplish this mapping, the IDS must be able to read and

interpret the on-disk structures used by the file system. However, the passive nature of intrusion

detection means it is not necessary for a disk-based IDS to be able to modify the file system, which

simplifies implementation.

Workstation disks are frequently powered down. These mappings must be restored to the IDS

(for example, from an on-disk copy) before regular operation commences. We anticipate this re-

quiring perhaps a few megabytes of private disk space. This approach is no different from the other

tables kept by disk firmware, such as for tracking defective sectors and predicting service times

efficiently.

A disk-based IDS is capable of watching for writes to free space that do not correspond with

updates to the file system’s block allocation table. Storing object and data files in unallocated disk

blocks is one method used by attackers to hide evidence of a successful intrusion [Grugg02]. Such

hidden files are difficult to detect, but are accessible by processes (such as an IRC or FTP server)

initiated by the attacker. Depending on the file system, watching free space may cause extra alerts

to be generated for short-lived files which are deleted after the contents are written to disk but

before the allocation table is updated.

3.2 Disk-based IDS administration

For effective real-time operation of a disk-based IDS, there must be a secure method for commu-

nication between an administrator’s computer and the IDS. This communication includes trans-

mitting access policies to the IDS, receiving alerts generated by the IDS, and acknowledging the

receipt of policies and alerts. Unlike in a server-based environment, however, a workstation disk

will likely not have direct access to a communications network to handle such administrative traf-

fic. In this case, this traffic must be routed through the host and over the existing physical link
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Figure 2: Tunneling administrative commands through client systems. For disks attached di-
rectly to host computers, a cryptographic tunnel allows the administrator to securely manage a
disk-based IDS. This tunnel uses untrusted software on the host computer to transport administra-
tive commands and alerts.

connecting the host with the disk, as shown in Figure 2. In other words, the host must be actively

involved in bridging the gap between the administrator and the disk.

This communications model presents several challenges. For one, in most block-based storage

interconnects, the disk takes the role of a passive target device and is unable to initiate a data

transfer to the administrator’s computer. Instead, the administrator must periodically poll the IDS to

query if any alerts have been generated. Also, the administrative communication path is vulnerable

to disabling by an attacker who has compromised the host system. In response to such disabling,

both the administrator and the IDS could treat a persistent loss of communication as a policy

violation. The IDS could alter its behavior as described in Section 3.4, while additionally logging

any subsequent alerts for later transmission to the administrator.

The communications channel between the disk-based IDS and the administrator must be pro-

tected both from eavesdropping and tampering by an attacker. Such a secure channel can be im-

plemented using standard cryptographic techniques. For the network intruder and rogue software

concerns in our security model, it is sufficient for secret keys to be kept in the disk’s firmware. If

physical attacks are an issue, disk secure coprocessors can be used [Zhang02a]. Such additions are

not unreasonable for future system components [Gobioff99, Lie00].
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3.3 Monitoring for policy violations

Once the administrative policy is received by a disk-based IDS, all storage requests arriving at the

disk should be checked against the set of violating interface actions. A check should be performed

for every block in a request: a write to block 72 of length 8 blocks should check for violating

actions on any of blocks 72–79. As this check is in the critical path of every request, it should be

implemented as efficiently as possible.

Some file system objects, such as the directory listing for a directory containing many files,

will span multiple sequential disk blocks. Space for such objects will generally be allocated by the

file system in a multiple of the file system block (hereafter, fs-block) size. We found it convenient

for our disk-based IDS prototype to evaluate incoming requests by their impact on entire fs-blocks

instead of on individual disk blocks: Generate the alert “the file /sbin/fsck was modified” when a

write to fs-block #35 causes the contents of fs-block #35 to change. When monitoring at the level of

fs-blocks, a disk-based IDS may need to momentarily queue several pending requests (all of which

affect a single fs-block) in order to evaluate their combined effect on the fs-block atomically.

When checking the legality of write requests, a disk-based IDS may need to first fetch the

previously written (old) data for that block from the disk. The old data can then be compared with

the new data in the write request to determine which bytes, if any, are actually changed by the

write. Such a check would also be necessary when a block contains more than one file system

object—for example, a single block could contain several file fragments or inode structures—and

different administrative policies apply to the different objects. A similar check allows the system to

quell alerts that might otherwise be generated during file system defragmentation or reorganization

operations; no alerts are generated unless the actual contents or attributes of the files are modified.

10



3.4 Responding to policy violations

For an intrusion detection system in a workstation disk, the default response to a policy violation

should be to prepare an administrative alert while allowing the request to complete. This is because

the operating system may halt its forward progress when a locally-attached disk returns an error or

fails to complete a request, especially at boot time or during crash recovery.

Pennington et al. discuss several other possible responses for a storage-based IDS after a policy

violation [Pennington03]. These include artificially slowing storage requests while waiting for an

administrative response, and internally versioning all subsequent modifications to aid the admin-

istrator in post-intrusion analysis and recovery [Strunk00]. To support versioning without needing

to modify the file system, a disk-based IDS can copy the previous contents of written blocks to

a private area on the disk that is inaccessible from the host computer. The administrator can later

read the contents of this area over the administrative communication channel.

After a policy violation, the IDS should make note of any dynamic changes to the on-disk

file system structure and adjust its behavior accordingly. For example, for the policy specified in

Section 3.1, when a new file is created in the /sbin directory the system should first generate an

alert about the file creation and then begin monitoring the new file for changes.

4 Prototype implementation

We built a prototype disk-based IDS called IDD (Intrusion Detection for Disks). The IDD takes

the form of a PC masquerading as a SCSI disk, enhanced with storage-based intrusion detection.

From the perspective of the host computer, the IDD looks and behaves like an actual disk. This

section describes architectural and implementation details of this prototype.
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Figure 3: Disk-based IDS prototype architecture. This figure shows the communications flow
between a Linux-based host computer and the locally-attached, FreeBSD-based IDD. The shaded
boxes are key components that support disk-based IDS operation. Ordinary storage traffic is ini-
tiated by application processes, passes across the SCSI bus, is checked by the policy monitor, and
is finally serviced by the disk. Administrative traffic is initiated by the administrator, passes across
a TCP/IP network, is received by the bridge process on the host computer, passes across the SCSI
bus, and is finally serviced by the policy monitor. The sample alert displayed on the administrator’s
console originated in the policy monitor.

4.1 Architecture

Figure 3 shows the high-level interactions between the IDD, the administrator, and the intermediary

host computer. The three major components that implement the disk-based IDS functionality are

the bridge process on the host computer and the request demultiplexer and policy manager on the

IDD.

The bridge process forwards commands from the administrator to the IDD and conveys admin-

istrative alerts from the IDD to the administrator. The request demultiplexer identifies which in-

coming SCSI requests contain administrative data and handles the receipt of administrative policy

and the transmission of alerts. Together, these components implement the administrative commu-

nications channel, as described in Section 4.2.
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The policy monitor handles the mapping of administrative policy into violating interface ac-

tions. It also monitors all ordinary storage traffic for real-time violations, and generates alerts to

be fetched by the administrator. This management of administrative policies is discussed further in

Section 4.3.

4.2 Administrative communication

The administrative communications channel is implemented jointly by the bridge process and

the request demultiplexer. The administrator sends its traffic directly to the bridge process over

a TCP/IP-based network connection. The bridge process immediately repackages that traffic in the

form of specially-marked SCSI requests and sends those across the SCSI bus. When these marked

requests arrive inside the IDD, they are identified and intercepted by the request demultiplexer.

Encryption of messages is handled by the administrator’s computer and the request demultiplexer.

The repackaging in the bridge process takes different forms depending on whether the admin-

istrator is sending new policies (outgoing traffic) or polling for new alerts (incoming traffic). For

outgoing traffic, the bridge creates a single SCSI WRITE 10 request containing the entire message.

The request is marked as containing administrative data by setting a flag in the SCSI command

descriptor block1. The request is then sent to the bus using the Linux SCSI Generic passthrough

driver interface.

For incoming traffic, the bridge creates either one or two SCSI READ 10 requests. The first

request is always of fixed-size (we used 8 KB) and is used to determine the number of bytes of

alert data waiting in the IDD to be fetched: The first 32 bits received from the IDD indicate the
1We set bit 7 of byte 1 in the WRITE 10 and READ 10 command descriptor blocks. This bit is otherwise unused and

is marked as reserved in the SCSI-3 specification. This method was the simplest of several options we considered—
other options included using vendor-specific operation codes for administrative reads and writes, or using MODE

SENSE and MODE SELECT to access administrative mode pages.
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integer number of pending bytes. The remaining space in the first request is filled with waiting data.

If there is more data waiting than fits in the first request, a second request immediately follows. This

second request is of appropriate size to fetch all the remaining data. These requests are marked as

containing administrative data and sent in the same manner as for outgoing traffic. Once the bridge

has fetched all the waiting data, it forwards the data to the administrator over the network.

Outgoing and incoming messages contain sequence and acknowledgment numbers, to ensure

that policies or alerts are not mistakenly or otherwise dropped. Our implementation sends one

pair of messages (outgoing and incoming) per second by default. In order to reduce administrator-

perceived lag, this frequency is temporarily increased whenever recent messages contained policies

or alerts.

4.3 Administrative policy management

The policy monitor bridges the semantic gap between the administrator’s policy statements and

violating interface actions, and it audits all storage traffic from the host computer in real time.

The policy monitor operates at the file system block (fs-block) level, as discussed in Section 3.3.

Request block numbers are converted to the relevant partition and fs-block numbers upon request

arrival. (Hereafter in this section, “block” refers to a fs-block.)

The IDD has a relatively simple semantically-smart [Sivathanu03] understanding of the on-disk

file system structures. The IDD currently understands the ext2 file system used by Linux-based host

computers [Card94a]; to support this we hard-coded the structure of on-disk metadata into the pol-

icy manager. For ext2 this included the ext2 superblock, inode, indirect block, and directory entry

structures. As an alternative to hard-coding, we envision a more flexible administrative interface

over which the relevant file system details could be downloaded.
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As administrative policy is specified, the IDD receives a list of files whose contents should

be watched in particular ways (e.g., for any change, for reads, and for non-append updates). For

each of these watched files, the IDD traverses the on-disk directory structure to determine which

metadata and data blocks are associated with the file. Each such block is then associated with an

access check function (ACF) that can evaluate whether a block access violates a given rule. For

example, the ACF for a data block and the “any change” policy would simply compare the old

contents of the block with the new. The ACF for an inode block and the “non-append updates”

policy would compare the old and new contents to ensure that the access time field and the file size

field only increased. The ACF for a directory entry block and the “any change” policy would check

the old and new contents to determine if a particular filename-to-inode-number mapping changed

(e.g., mv file1 file2 when file2 is watched) and, if so, that the new inode’s file contents match

the old inode’s file contents.

After a block is associated with an ACF, it is added to the watched block table (WBT). The

WBT is the primary structure used by the policy manager for storage request auditing. It is stored

in private, reserved disk space for persistence and paging. A WBT entry contains a monitored

block number, a pointer to the associated ACF, and a human-understandable explanation (e.g., the

contents of the file /bin/netstat were modified) to be sent whenever the ACF reports a violation. The

IDD maintains a separate WBT for each monitored partition, as well as a WBT for the partition

table and other unpartitioned disk space.

When a storage request arrives from the host computer, its blocks are checked against the

appropriate partition’s WBT. If any blocks are indeed watched, the associated ACFs for those

blocks are invoked to determine whether an alert should be generated. As discussed in Section 3.3,

checking the validity of a write request may require the old data to be read from the disk. Blocks

that have a high probability of being checked, such as those containing monitored inodes and
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directory entries, are cached internally by the IDD to reduce IDS-related delays. Note that this

cache is primarily needed to quickly execute ACFs on block updates that will not generate an alert;

generally, we are unconcerned with performance when alerts are to be generated. Examples of

appropriate cache uses include directory blocks in which a subset of names are watched and inode

blocks in which a subset of inodes are watched.

5 Evaluation

This section examines the performance and memory overheads incurred by IDD, our prototype

disk-based IDS. As hoped, we find that these overheads are not unreasonable for inclusion in

workstation disks.

5.1 Experimental setup

Both the host computer and the locally-attached disk emulator are 2 GHz Pentium 4-based com-

puters with 512 MB RAM. The disk emulator runs the FreeBSD 5.1 distribution and makes use

of the FreeBSD target-mode SCSI support in order to capture SCSI requests initiated by the host

computer. The host computer runs the Red Hat Linux 7.3 distribution. The machines are con-

nected point-to-point using QLogic QLA2100 fibre channel adapters. The backing store disk on

the emulator is a Fujitsu MAN3184MP connected to an Adaptec 29160N Ultra160 SCSI con-

troller. In an effort to exercise the worst-case storage performance, the disk emulator was mounted

synchronously by the host computer and caching was turned off inside the backing store disk.

We do not argue that embedded disk processors will have a 2 GHz clock frequency; this is

perhaps an order of magnitude larger than one might expect. However, an actual disk-based IDS

would be manually tuned to the characteristics of the disk it runs on and would therefore run more
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efficiently than the IDD, perhaps by as much as an order of magnitude. To compensate for this

uncertainty, we report processing overheads both in elapsed time and in processor cycle counts,

the latter of which provides a reasonably portable estimate of the amount of work performed by

the IDD.

Our experiments use microbenchmarks and two macrobenchmarks: PostMark and SSH-build.

The PostMark benchmark was designed to measure the performance of a file system used for

electronic mail, netnews, and web based services [Katcher97]. It creates a large number of small

randomly-sized files (between 512 B and 16 KB) and performs a specified number of transactions

on them. Each transaction consists of two sub-transactions, with one being a create or delete and

the other being a read or append. The default configuration used for the experiments consists of

10,000 transactions on 200 files, and the biases for transaction types are equal.

The SSH-build benchmark[Seltzer00] was constructed as a replacement for the Andrew file

system benchmark [Howard88]. It consists of 3 phases: The unpack phase, which unpacks the com-

pressed tar archive of SSH v. 1.2.27 (approximately 1 MB in size before decompression), stresses

metadata operations on files of varying sizes. The configure phase consists of the automatic gener-

ation of header files and makefiles, which involves building various small programs that check the

existing system configuration. The build phase compiles, links, and removes temporary files. This

last phase is the most CPU intensive, but it also generates a large number of object files and a few

executables.

5.2 Common-case performance

When new requests arrive from the host computer, the IDD checks whether any of the request’s

blocks are in the WBT. In the (very) common case, no matches are found. This means there are no

policy implications for that request, so no further IDS processing is required.
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Figure 4: Application benchmarks. These graphs show the impact of the initial WBT check on
application performance. These experiments were run with the IDS engaged and watching different
amounts of data; the file system was constructed such that no policy violations were generated by
the disk accesses. The data indicate virtually no scaling of the overhead as a function of the amount
of watched data. 0 MB is the leftmost thin bar in each group.

As shown in the second column of Table 1, the WBT lookup takes very little time and requires

less than 1500 cycles. As expected, the added latency has a minimal effect on application perfor-

mance: Figures 4(a) and 4(b) show that the application run times for PostMark and SSH-build do

not change when varying the number of monitored blocks over a large range.

The overheads of the IDS infrastructure itself are also small. The difference in PostMark run

times between running the disk emulator with no IDS and running it with an empty IDS (with no

policy set, and therefore no WBT lookup) was less than 1%.

The size of the WBT is approximately 20 bytes per watched block. To put this in context,

Tripwire’s default ruleset for Red Hat Linux expanded on our testbed host to 29,308 files, which in

turn translates to approximately 225,000 watched file system blocks. This would require 4.5 MB to

keep the entire WBT in core. This number can be substantially reduced, with a small slowdown for
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Old
data
status

WBT check
time

Fetch old data ACF check
time

Disk access
time

Total
time

Data block write: Changes the data in one block of a monitored file.
Not
cached

0.655 µs
(0.076 µs)

1310 cycles

4,210 µs
(1,580 µs)

0.447 µs
(1.48 µs)

893 cycles

5,840 µs
(21.0 µs)

10.1 ms

Cached 0.554 µs
(0.102 µs)

1110 cycles

3.21 µs
(0.340 µs)

6410 cycles

0.270 µs
(0.033 µs)
539 cycles

4,390 µs
(1,500 µs)

4.39 ms

Metadata block write: Changes the last-modify-time in a monitored inode.
Not
cached

0.548 µs
(0.094 µs)

1100 cycles

3,860 µs
(1,420 µs)

0.250 µs
(0.029 µs)
501 cycles

5,700 µs
(716 µs)

9.56 ms

Cached 0.594 µs
(0.134 µs)

1190 cycles

3.07 µs
(0.477 µs)

6140 cycles

0.772 µs
(2.59 µs)

1540 cycles

3,810 µs
(1,780 µs)

3.81 ms

Table 1: Microbenchmarks. This table decomposes the service time of write requests that set off
rules either on file data or metadata. The numbers in parentheses show the standard deviation of
the average. Two cases for each are shown, where the requested blocks either are or are not already
present in the IDD block cache. With caching enabled, the total time is dominated by the main disk
access. When blocks are not cached, the service time is roughly doubled because an additional disk
access is required to fetch the old data for the block. The three phases of an IDS watched block
evaluation are described in Section 4.3. Numbers shown in bold represent the dominating times in
these experiments.
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the non-common-case IDS performance, by only keep 4 bytes per watched block in core (or, better

yet, keeping lists extents of watched blocks in core) and demand paging the remainder of the WBT.

This would reduce the memory cost to 900 KB or less. (At time of this writing, our prototype does

not yet demand page the WBT.)

5.3 Additional checks on watched blocks

When one or more of a write request’s blocks are found in the WBT, additional checks are made to

determine whether the request violates administrative policy. If necessary, the old data is fetched

from the disk in order to determine which bytes are changed by the write. The ACF is then exe-

cuted; if this determines that the request illegally modifies the data, then an alert is generated and

queued to be sent to the administrator.

We used microbenchmarks to measure the performance of various types of rules being matched,

which we show in Table 1. Each alert was triggered 200 times, accessing files at random which had

rules set for them. In order to determine if a rule has been violated, and to send an alert, several

operations need to take place. For any write to a file data block, for example, the IDD needs to

determine first if the given block is being watched; this takes 0.665 µs. It then reads the modified

block on the disk to see if the write results in a modification; this takes 4,207 µs if the IDD does

not have the block to be modified in cache, and 3.208 µs if it does. If the write is to an inode

block, it takes 0.25 µs to determine if it changes a watched field in that inode. Finally, an alert is

generated and the write is allowed to complete, this takes 5,841 µs if the block wasn’t in cache

(one revolution from the completion of the read request of the same block), and 4,386 µs if it was

in cache. Table 1 summarizes the time taken by all of these actions, as well as the number of CPU

cycles. We view these numbers as conservative estimates of CPU costs, because the IDS code is

untuned and known to have inefficiencies. Nonetheless, the results are quite promising.
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5.4 Frequency of IDS invocation

To understand the frequency of overheads beyond the common-case performance, we examined

11 months worth of local file system traces from managed desktop machines in CMU’s ECE De-

partment. The traces included 820,145,133 file operations, of which 1.8% were modifications to

the disk. Using these traces, we quantify the frequency of two cases: actual rule violations and non-

rule-violating updates (specifically, incidental updates to shared inode blocks or directory blocks).

We examine the traces for violations of the ruleset used by Pennington et al. [Pennington03],

which includes Tripwire’s default rule set for Red Hat Linux and a few additional rules regarding

hidden names and append-only audit logs. This expanded out to rules watching 29,308 files, which

in turn translates to approximately 225,000 blocks being watched. In the traces, 5350 operations

(0.0007% of the total) impacted files with rules set on them. All but 10 of these were the result of

nightly updates to configuration files such as /etc/passwd and regular updates to system binaries.

As discussed in [Pennington03], a method for coordinating administrative updates with the IDD

would convert the response to planned updates from alerts to confirmations.

The first class of non-rule-violating updates that require ACF execution is shared inode blocks.

Our prototype notices any changes to an inode block containing a watched inode, so it must also

determine if any given modification impacts an inode being watched. In the case of the ext2 file

system[Card94a], 32 inodes share a given block. If any inode in a given block is watched, an update

to one of the 31 remaining inodes will incur some additional overhead. To quantify this effect, we

looked at the number of times an inode was changed which was in the same block as a watched

inode. For this analysis, the local file systems of 15 computers were used as examples of which

inodes share blocks with watched files. For our traces, 1.9% of I/Os resulted in changes to inode

blocks. Of these, 8.1% update inode blocks that are being watched (with a standard deviation

of 2.9% over the 15 machines), for a total of 0.15% of I/Os requiring ACF execution. Most of
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the inode block overlap resulted from these machines’ /etc/passwd being updated nightly. This

caused its inode to be in close proximity with many short-lived files in /tmp. On one machine,

which had its own partition for /tmp, we found that only 0.013% of modifications caused writes to

watched inode blocks. Using the values from Table 1, we compute that the extra work would result

in a 0.01–0.04% overhead (depending on the IDD cache hit rate).

Similarly, the IDD needs to watch directories between a watched file and the root directory.

We looked at the number of namespace changes the IDD would have to process given our traces.

Using the same traces, we found that 0.22% of modifications to the file system result in namespace

changes that an ACF would need to process in order to verify that no rule was violated. Based

on the Table 1 measurements, these ACF invocations would result in a 0.004–0.01% performance

impact, depending on IDD cache hit rate.

6 Discussion of feasibility

Workstation disks are extremely cost-sensitive components, making feature extensions a tough

proposition. Security features, however, are sufficiently important and marketable today that fea-

ture extensions are not impossible. To make for a viable business case, uninterested customers must

observe zero cost. the cost of any hardware support needed must be low enough that The profits

from the subset of customers utilizing (and paying for) the IDS features must compensate for the

marginal hardware costs incurred on all disks produced. A similar situation exists in the network

interface card (NIC) industry, where 3com embedded sufficient hardware in their standard NICs

to allow them to sell firewall-on-NIC extensions to the subset of interested security-sensitive cus-

tomers [3Com01a]; the purchased software is essentially an administrative application that enables

the support already embedded in each NIC [3Com01b] plus per-seat licenses.
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Evaluation of our disk-based IDS prototype suggests that IDS processing and memory require-

ments are not unreasonable. In the common case of no ACF invocations, even with our untuned

code, we observe just a few thousand cycles per disk I/O. Similarly, for a thorough ruleset, the

memory required for IDS structures and sufficient cache to avoid disk reads for non-alert ACF ex-

ecutions (e.g., shared inode blocks) is less than a megabyte. Both are within reasonable bounds for

modern disks. They may slightly reduce performance, for example by reducing the amount of disk

cache from 2–8 MB (representative values for today’s ATA drives) by less than one megabyte. The

overall effect of such changes should be minor in practice, since host caches capture reuse while

disk caches help mainly with prefetching. Moreover, neither the memory nor the CPU costs need

be incurred by any disk that does not actually initialize and use its IDS functionality.

In addition to the IDS functionality, a disk-based IDS requires the disk to be able to perform

the cryptographic functions involved with the secure administrative channel. This requires a key

management mechanism and computation support for the cryptography. Again referring to the

3com NIC example, these costs can be very small. Further, various researchers have proposed

the addition of such functionality to disks to enable secure administration of access control func-

tions [Aguilera03, Gobioff99], and it can also be used to assist secure bootstrapping [Arbaugh97].

7 Summary

Storage-based intrusion detection is a promising approach, but it would be most effective if em-

bedded in the local storage components of individual workstations. From experiences developing

and analyzing a complete disk-based IDS, implemented in a disk emulator, we conclude that such

embedding is feasible. The CPU and memory costs are quite small, particularly when marginal

hardware costs are considered, and would be near-zero for any disk not using the IDS functional-
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ity. The promise of enhanced intrusion detection capabilities in managed computing environments,

combined with the low cost of including it, makes disk-based intrusion detection a functionality

that should be pursued by disk vendors.
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